
Abstract-Robot assisted standing-up manoeuver was tested in
an intact person and a person after above-knee amputation.
The subjects were asked to use as much leg activity as possible
to lift their body while maintaining contact with the robot. The
robot guided the subjects with three reference speeds.
Kinematics and external forces acting on the body were
recorded. The robot influence on the hip trajectory and the
torques of the leg joints were studied. The subjects were able to
track the robot movement. Thus, it is possible to use the robot
to guide an impaired person along a desired trajectory during
the standing-up process. In this way the impaired persons can
be trained to accomplish an efficient sit-to-stand movement,
while different trajectories of raising can be preprogrammed.
Keywords - Standing-up, assistive robot, above-knee
amputation

I. INTRODUCTION

The ability to stand up from a sitting position is essential
for a person’s independency. Successful raising is also the
prerequisite for walking. However, the standing-up
manoeuvre requires higher torque and larger ranges of
motion in the joints of the lower limbs than walking.
Standing-up is a frequent human activity. On average a
healthy person stands up four times per hour [1]. Persons
after the lower limb amputation are faced with the necessity
to relearn standing-up in a different way than they were
used to. Usually higher joint torques in the intact leg and
improved balancing are required.

A robot was built to assist disabled persons during the
sit-to-stand transfer. The robot is meant to be used as a
training device, an assessment tool and to study the rising
manoeuvre. When training with the robot assistive device, a
disabled person can safely approach limits of his/her
capabilities without risking to fall. Using the robot to
measure rising is more comfortable than placing sensors
such as infrared markers or goniometers on the patient's
body. The assistive device can be programmed to interact
with a person's voluntary activity in order to gain
information about the standing-up process. The suitability to
support paraplegic patients rising by the help of functional
electrical stimulation was evaluated in [2]. A similar passive
device supporting part of a paraplegic patient's body weight
was used to study the FES control strategies during
standing-up [3]. We believe that other categories of disabled
persons, such as amputees and aging population can benefit
from robot assisted training of standing-up.

The optimal trajectory of an amputee may differ from
the optimal trajectory of an intact person. The present paper
is a preliminary study mainly focused on the use of the robot
as a device to guide a patient along a desired

preprogrammed trajectory. Special attention was paid to
interaction between the subject and the robot.

II. METHODOLOGY

The assistive robot resembles to half of a seesaw
construction and has one active and one passive degree of
freedom (Fig. 1). A rotating segment is driven by a
hydraulic cylinder. A commercially available bicycle seat
slides freely along the segment. The rotation and translation
are measured by incremental encoders with resolutions of
0.072° and 0.137 mm, respectively. The pump powering the
hydraulic system maintained a system pressure of 50 bar
and provided a hydraulic current of up to 1 l/s. A current
driven MOOG 76-100 servovalve (Moog Inc., New York,
U.S.A.) controls the pressure difference of the hydraulic
cylinder. The robot is supervised by a Pentium 150 MHz
computer. The computer includes a custom made board with
two LM628 motion controllers running at 620 Hz. The
motion controllers generate trapezoidal reference
trajectories, while employing PID control. The computer
contains also an ISA bus I/O board capable of aquiring
analog and digital signals.
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Fig. 1. The standing-up robot
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 All external forces acting on the body as well as the
body motion were recorded. The forces and torques under
the feet were assessed using two AMTI force plates (AMTI,
Inc., Newton, MA, U.S.A.). A JR3 six-axis robot wrist
sensor (JR3, Inc., Woodland, CA, U.S.A.) mounted under
the seat measured the force and torque vectors exerted on
the seat. Trajectories of the infrared markers placed over the
approximate centers of body joints were recorded with an
Optotrak contactless optical system (Optotrak, Northern
Digital Inc., Waterloo, Canada). A three-dimmensional
inverse dynamic model based on the Newton-Euler
formulation was used to calculate the joint torques and
forces from the measured data [4]. The model consisted of
15 segments: feet, shanks, thighs, pelvis, trunk, head, upper
arms, forearms and hands. The segmental anthropometric
parameters were taken from [5].

One intact subject (UM, male, 83 kg, 174 cm, 24 years
old) and one person after above-knee amputation of his left
leg (AS, male, 85 kg, 179 cm, 44 years old, 23 years of
prosthesis use) participated in the present study. The lower
seat position was set to a height comparable to that of a
normal chair. During standing the robot height allowed the
subjects to stand with their body weight supported by the
lower limbs while the seat still maintaining contact with the
buttocks. The subjects kept their arms crossed during rising.
Robot lifting was started by pushing a button which the
subjects held in their hands. In the beginning each subject
performed three rising manoeuvres without the help of the
robot. Than robot assisted trials were performed with three
different velocities: 0.09 rd/s, 0.18 rd/s and 0.36 rd/s. The
highest speed was comparable to that of unsupported
standing-up. The low and medium speed were arbitrarily
chosen in order to gain information whether the interaction
between the subject and the robot changes with respect to
the robot speed. The subjects were asked to stand up, while
maintaining contact with the seat and using as much leg
activity as possible to lift their body. After a few practice
risings, three trials were recorded for each speed of
standing-up.

III. RESULTS

In subject UM the hip trajectories during standing up
with the robot were similar to unsupported raising for all
three speeds (Fig. 2). In the subject AS the ratio of vertical
to horizontal speed was higher in the beginning of the
manoeuvre during robot supported standing-up. The robot
successfully caused the subject AS to change the trajectory
he was used to perform. The robot assisted trajectories were
more repetitive than in the subject UM.

In order to show the robot influence on the activity of
the lower extremities, the ankle, knee and hip joint torques
in the sagittal plane are presented in Fig. 3, Fig. 4 and Fig.
5, respectively.
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Fig. 2. Hip trajectory in the sagittal plane
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Fig. 3. Ankle torque in the sagittal plane.
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During unsupported standing up the shapes of the torque
time courses in subject UM were similar to the torques in
the intact leg of the subject AS. However, the maximal
values of the torques were significantly higher in the subject
AS. In the impaired leg the torques in the passive ankle and
knee joints as well as the active hip joint were lower and of
different shape as compared to the intact leg.

 In both subjects the time courses of the lower extremity
joint torques retained some resemblance to unconstrained
rising. However, the knee torque maximal values in subject
UM and in the healthy leg of AS were considerably lower
during robot assisted standing up. In Fig. 4 it can be
observed that the prosthetic knee locks gradually during
robot assisted rising, opposite to quick locking taking place
during unsupported standing.

Both subjects adapted well to the robot induced motion.
They had no troubles to maintain balance. No excessively
high values, quick changes or uncontrolled oscillations of
the leg joint torques occurred. The knee torques indicate that
UM was lifted mainly by the robot without activating leg
muscles during high speed rising. In the impaired leg’s hip
joint of AS similar oscillations were present during rising
with and without the robot.

IV. CONCLUSION

Both subjects had no difficulties to track the robot
induced movement. Considerably different trajectory was
induced to the impaired subject when using the robotic aid,
as compared to unsupported rising.

The robot partially supported the body thus modifying the
torques in the leg joints. The body motion was similar
regardless of the velocity of rising.  In this way a person can
be trained to follow a desired trajectory by gradually
increasing the speed of rising.

One active and one passive degree of freedom are
sufficient to achieve a movement which is similar to natural
standing-up. In future investigations the seat translation is
going to be driven by additional hydraulic cylinder to
impose different hip trajectories. It was found that the trunk
orientation can be imposed independently from the seat
inclination. However, adding an active seat rotation might
contribute to the subject's comfort.

A considerable number of investigations addressing the
problem of optimal trajectory computation for open chain
manipulators were done. The optimization approaches
developed in robotics can be used to calculate efficient
rising  trajectories for prosthesis users. Martin [6] presented
a strategy to calculate minimum effort motions. Another
possibility is to find minimum time motion, while taking
into account the limitations in lower extremity joint torques.
A list of minimum time optimization methods can be found
in [7].
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Fig. 4. Knee torque in the sagittal plane.
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Fig. 5. Hip torque in the sagittal plane.
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